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Abstract—Biological neurons exhibit rich and complex 

nonlinear dynamics, which are computationally expensive and 

power-hungry for hardware implementation. This paper 

demonstrates the design and development of a hardware-

friendly nonlinear neuron model based on an intuitive control 

theory perspective. The neuron consists of a mixed-feedback 

system operating at multiple timescales to exhibit a variety of 

modalities that resemble the biophysical mechanisms found in 

neurophysiology. The single neuron dynamics emerge from four 

voltage-controlled current sources and features spiking and 

bursting output modes that can be controlled using tunable 

parameters. The bifurcation structures of the neuron, modeled 

as a 4D dynamical system, illustrate the roles of sources acting 

on different timescales in shaping the neural dynamics. For the 

first time, a neural network test chip consisting of 6 nonlinear 

bio-mimetic neurons and 10 tunable synapses was designed on 

180nm CMOS technology. A 4-neuron network with inhibitory 

synapses of increasing strength was verified to achieve coupled 

rhythms. The test chip has an area of 0.6mm x 2mm and 

consumes 0.753mW of total average power.  

Keywords—neuromorphic, nonlinear dynamics, mixed 

feedback control, bio-inspired, coupled neural networks 

I. INTRODUCTION  

Neuron models used in Artificial Neural Networks (ANNs) 
are highly simplified in function and operation, to facilitate 
scaling to large networks [1]. The most popular 
implementation that is widely adopted in modern AI hardware 
is the Rectified Linear Unit (ReLU) [2]. The ReLU neuron 
primarily realizes a linear activation function for all positive 
inputs, while rectifying negative inputs to zero, thus 
introducing a simple form of nonlinearity, as shown in Fig. 1. 

On the other hand, Neuromorphic Spiking Neural Networks 
(SNNs), which intend to be bio-inspired, use a Leaky 
Integrate-and-Fire (LIF) neuron which can generate voltage 
spikes or ‘events’ similar to biological neurons. The LIF 
neuron is implemented using an RC network that linearly 
integrates an applied external current to produce a voltage 
ramp [3]. If this ramp output exceeds a threshold voltage, a 
spike is generated. Thus, the LIF neuron realizes the step 
activation, which is also a simple form of nonlinearity 
generating ‘all-or-nothing’ events as voltage spikes. 

Though ReLU and LIF neurons have been extremely 
successful when used in a predominantly feed-forward 
network, they are not suitable to demonstrate neuroscientific 
principles such as multiple modes of operation (spiking, 
bursting, etc), coupled oscillations with excitatory and 
inhibitory connections, and rhythm generation (in/anti-phase). 

Biological neurons exhibit rich nonlinear dynamics both at 
the single neuron level and at the network level, which is 

enabled through neuromodulation, using multiple feedback 
paths (local and global) operating at multiple timescales [4-5]. 
Complex neuron models inspired by neurophysiology have 
been proposed before, like the Hodgkin-Huxley model [6] and 
the Izhikevich model [7]. These models capture the biophysics 
of the neuron accurately but are based on non-intuitive 
computationally expensive differential equations that are hard 
to implement on hardware with minimal circuit elements. 

Neuromodulation of a single neuron can be efficiently 
implemented using a nonlinear circuit model with mixed 
feedback paths (positive and negative), operating at different 
timescales [8]. This paper presents, for the first time to the best 
of our knowledge, the complete hardware implementation of 
a neural network consisting of the nonlinear neurons proposed 
in [8], which only showed SPICE simulations of a single 
neuron circuit. Section II provides a brief background of the 
nonlinear neuron model. Section III presents the bifurcation 
study of the software model. Section IV describes the chip 
architecture and neural network circuit design with tunable 
neurons and synapses. Section V discusses measured results 
of our test chip, and Section VI summarizes our contributions. 

II. BACKGROUND 

The proposed nonlinear neuron model is made up of an 
excitable membrane that can be modeled as a highly parallel 
circuit, including a passive RC network in parallel with 
voltage-gated conductance channels inspired by the Na+/K+ 
ion channels commonly found in neurophysiology [5]. These 
conductance channels provide positive and negative feedback 
in addition to the applied external stimulus and passive 
leakage currents, thereby forming a mixed-feedback system. 
Moreover, different conductance elements in the model are 
tuned to operate at distinct timescales to achieve modular 
control of the excitability properties of the entire neuron. 

The software model of a single neuron has 4 conductance 
elements, forming 2 positive and 2 negative feedback loops 
and operates at 3 different timescales – fast, slow, and 

Fig. 1. Neuron circuit model. Adopted from [8]. Passive RC network in 
parallel with four conductance elements operating at three timescales. 

The nonlinear feedback currents are fast negative, slow positive, slow 

negative, and ultra-slow positive. Iapp provides external input stimulus. 
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ultraslow, as shown in Fig. 1. The fast negative conductance 
(

) operates in microsecond (µs) range, the slow positive (
) 

and slow negative (
) conductances operate in millisecond 

(ms) and ultra-slow positive conductance (
 ) operates in 

100s of ms range. The four voltage-controlled conductance 
channels act as dependent current sources, Ix where x = f/s/us 
for fast, slow and ultra-slow timescales respectively. Each 
conductance element incorporates a hyperbolic tangent (tanh) 
transfer function, which combined together enables a complex 
nonlinear activation function for the neuron. The nonlinearity 
is particularly important at the fast and slow timescales, which 
can be seen as ‘N-shaped’ IV curve for the corresponding 
conductance channel. The nonlinear differential equations that 
describe the proposed neuron model are summarized as, 





     ∑

 1 





    2 

In equation (1),   is the membrane capacitance, is 

the externally applied current, conductance channel currents 


 are nonlinear functions of the channel voltages, , given 

by 
    

 ℎ  
  and   is the 

passive current linearly dependent on , for example,  
. In equation (2),  is the time delay and  is the delayed 
output voltage of the conductance channel following . 

III. BIFURCATION STUDY OF THE SOFTWARE MODEL 

The model proposed in [8] was simulated in software as a 
dynamical system for studying the transient behavior, phase 
portrait trajectories and bifurcation structures present in the 
model. The values for all parameters ( , , etc) were chosen 
carefully by tuning the fast, slow, and ultraslow I-V curves, 
based on the methods used in [8]. All quantities – voltages, 
currents and time are dimensionless. Neuron membrane 
voltage (Vm) and fast conductance voltage (Vf) are considered 
equal in the presented study, to reduce the 4D nonlinear 
dynamical system (Vm, Vf, Vs, Vus) to a 3D system aiding 
better visualization of the results. Bifurcation analysis was 
done using XPPAUT based on the methods described in [9].  

Fig. 2 shows the transient response of the neuron voltage 
terms, Vm, Vf, Vs, and Vus, demonstrating different modes of 
operation – spiking (blue), bursting (red), and burst excitable 
(green), simply by tuning the external stimulus current, Iapp. 
In addition, the plot emphasizes that the slow component is 
necessary to oscillate while the ultra-slow component is 
responsible for bursting behavior. Fig. 3 illustrates the 
trajectories of the system dynamics in 3D highlighting the 
transition from spiking to bursting to burst excitable behavior.  

Fig. 4 shows the bifurcation structure for the fast (Vm, Vf) 
subsystem with Vs treated as a bifurcation parameter.  Pink 
traces are stable critical points, while black traces denote 
unstable critical points.  The blue trace is the projection of the 
oscillating trajectory in this fast-slow system, corresponding 
to a spike. Fig. 5 shows the bifurcation structure for the (Vm, 
Vf, Vs) system with Vus as a bifurcation parameter. Color 
codes are similar to Fig. 4 except that now purple traces denote 
maximum and minimum Vm values along unstable periodic 
orbits and green traces denote maximum and minimum Vm 
values along stable periodic orbits The trajectory observed 
(blue) is now a burst, not a relaxation oscillation. The 
bifurcation study of the system distinguishes the roles of 

Fig. 2. Transient behavior of the neuron model for different modes of 
operation – spiking (blue), bursting (red), and burst excitable (green).  

Fig. 3. Phase portrait of the neuron model as a 3D dynamical system 

with fast conductance voltage (Vf) directly following the membrane 
voltage (Vm). The trajectories of Vm are for different modes of 

operation – spiking (blue), bursting (red), and burst excitable (green).  

Fig. 4. Bifurcation structure for the fast (Vm, Vf) subsystem with Vs 

treated as a bifurcation parameter. a.u. stands for arbitrary units. 
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different voltage terms in producing the solutions observed in 
the transient response simulations and phase portrait. 

IV. HARDWARE IMPLEMENTATION 

The main contribution of this work is to take the software 
model proposed in [8], validated with SPICE simulations in 
0.35µm process and implement a translated model in TSMC 
180nm CMOS process technology node. In addition to 
implementing single-neuron circuits, we have designed a test 
chip with multiple neurons forming multiple networks 
interconnected with tunable synapses in order to test and 
validate network-level behavior.  

A. Chip Architecture 

Fig. 6 provides the detailed architecture block diagram of 
the test chip. The chip consists of 4 neural networks, each 
consisting of 6 nonlinear neurons and 10 synapses 
implemented using operational amplifiers (op-amps). Within 
each neural network in the chip, 5 out of 6 neurons are fully 
interconnected to each other with synapses with one neuron 
isolated for single neuron testing, as shown in Fig. 6(a). The 
circuit model of the individual neuron is shown in Fig. 6(b), 
as described in the background section. The membrane 
voltage outputs of the six neurons in each of the 4 networks 

are sent through a 4:1 multiplexer (MUX). Two input digital 
select bits S0 and S1 select one of the 4 neural networks as the 
active network for testing. The output of 4:1 MUX is sent to 
voltage buffers that can drive large capacitive loads and enable 
accurate probing of the internal voltages. All neurons in the 
chip share common input bias voltages and bias currents, 
while the external stimulus current is set by two different 
voltages, vtune1 for the neurons N1, N2, N3 and vtune2 for the 
remaining 3 neurons N4, N5, and N6 of the 6-neuron network. 

B. Chip Design 

Fig. 6(b) shows the circuit schematic diagram of the single 
nonlinear neuron model and Fig. 7(c) shows the circuit 
topology of the individual conductance channel. In Fig. 6(b), 
the 20pF membrane capacitance of the neuron is realized 
using the M1 MOSCAP (Metal-Oxide-Semiconductor) since 
it has higher capacitance density and hence occupies a smaller 
area, compared to a MIMCAP (Metal-Insulator-Metal) 
available in the same technology. The external stimulus 
current, Iapp is provided using the two PMOS transistors M2 
and M3 that is biased using another op-amp. The analog input 
voltage, vtune, is used to tune the Iapp current. The equations 
for the dependent nonlinear current sources Ix, delay elements 
, and passive current Ip are given by equations (3) – (5). 


  

 ℎ  
   

  

 3 

 




   










4 

     ℎ  











5 

The passive resistance is realized using an op-amp 
transconductance, Gm=1/Rp. Equations for Gm and Ip, shown 
in equation (5), can be tuned using the analog bias voltages Vb 
and Vref respectively. The current sources Ix are implemented 
using two op-amps and 1 MOSCAP (2pF) each, as shown in 
Fig. 6. The first op-amp acts as a voltage-follower with a delay 
that can be tuned using the bias voltage, VTx. The second op-
amp provides the tanh transfer function as described by 
equation (3). The slope and offset of the tanh function can be 
tuned by bias voltages Vbx and Vδx respectively. Positive and 

Fig. 5. Bifurcation structure for the (Vm, Vf, Vs) system with Vus taken 

as the bifurcation parameter. 

 
Fig. 6. Chip Architecture. (a) 6 neurons with 10 synapses formed 1 network. 5 neurons are connected with 10 opamp-based synapses. One neuron is 

isolated from the network for unit testing. (b) Neuron circuit schematic. Passive RC network in parallel with four conductance elements operating at 
three timescales. The nonlinear feedback currents are fast negative, slow positive, slow negative and ultra-slow positive. The amplifier on top with two 

PMOS is a current tuning structure to provide the external current, Iapp. Another op-amp acts as tunable passive resistance. A MOSCAP with 20µm × 

20µm NMOS provides 20pF membrane capacitance. (c) Circuit schematic of negative conductance channel. Adopted from [8]. First op-amp acts as a 
first-order tunable delay stage. Second op-amp provides e nonlinear tanh activation and decides the feedback type of the element. For the positive 

conductance element, input terminals of the second op-amp are swapped. 
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negative feedback of the dependent current source is obtained 
by flipping the positive and negative terminal of the second 
op-amp. All op-amps operate in the sub-threshold region of 
operation thereby enabling ultra-low-power consumption. 
The synapses connecting the neurons are implemented as a 
trans-linear device using the same op-amp used for the neuron. 

V. MEASUREMENT RESULT 

Fig. 7 shows the micrograph of the prototype chip 
fabricated on 180nm CMOS technology. The supply voltage 
of the chip is 3.3V. Area of each neuron is 105µm x 65µm and 
consumes an average power of 31.4µW and 23.1µW during 
spiking and bursting mode. The prototype chip occupies an 
area of 0.6mm x 2mm and consumes 753µW power. 

Each neuron requires several bias voltages and currents as 
described in the previous sections. Op-amp design with MOS 
transistors in the sub-threshold region was successfully 
implemented to provide the tanh transfer function. Using 2 op-
amps, the ‘N shaped’ IV curve of the fast timescale 
conductance channel was generated, as shown in Fig. 8. This 
confirms the nonlinear operating region of the dependent 
current source if -. Four conductance channels were connected 
together to simulate a single neuron. Tuning the gain of the 
slow conductance channels, the neuron was able to produce 
spiking and bursting rhythms at output membrane voltage, as 
shown in Fig. 9, which also shows the phase transition 
between spiking and bursting modes by controlling the 
external current, Iapp. Fig. 10 demonstrates a 4-neuron network 
with inhibitory synapses to show coupled busting with 

increasing strength of synapses. Table I summarizes the 
results of our work compared to the state-of-the-art. The 
power and area per neuron of this work is comparable to 

digital and mixed-signal implementations of state-of-the-art. 

VI. CONCLUSION 

This paper presented the hardware implementation of a 
nonlinear neuron model designed from a control theory 
perspective. The neuron is modeled as a mixed-feedback 
system operating at multiple timescales that can be tuned to 
produce spiking and bursting behavior. Bifurcation study of 
the neuron model as a 4D dynamical system describes the 
expected phase trajectories of the membrane voltage. A test 
chip consisting of 24 neurons and 40 synapses was designed 
and implemented on 180nm CMOS process. The neurons can 
exhibit rhythmic patterns found in tightly coupled neural 
networks in biology, such as the Central Pattern Generator 
(CPG), allowing neuromodulatory control on hardware at 
nodal and network levels. Recreating the CPG, crucial for 
movement in animals, can enable robust sensorimotor control 
for robotic locomotion. It is possible to scale the size and 
power of the neuron further by porting to a deep-submicron 
technology node, thereby enabling large-scale neuromorphic 
neural networks with nonlinear dynamics inspired by biology. 

Fig. 7. Prototype chip die micrograph, implemented on TSMC 180nm 

technology. The total chip area is 0.6mm x 2mm 

Fig. 8. IV curve of conductance element. (a) N-shape IV curve of 
conductance element in parallel with a passive resistive component. (b) 

Hyperbolic tangent (tanh) activation curve of conductance element. 

 

Fig. 9. Phase transition between spiking and bursting. (a) Neuron 

membrane voltage in spiking mode. Apply Iapp = 300nA. (b) Neuron 

membrane voltage in bursting mode. Apply Iapp = 500nA. 

 
Fig. 10. Four neurons in bursting mode interconnected with inhibitory 

synapses form a network. N1 receives the highest inhibition from the 

other three neurons and N4 receives the minimum inhibition. 

TABLE I. ARCHITECTURE AND PERFORMANCE SUMMARY 

Parameters 
AdExp 

IF [10]  

Braindrop 

[11] 

NeuRRAM 

[12] 
This work 

Technology 
22nm 

CMOS 

28nm 

FDSOI 

180nm 

CMOS 

180nm 

CMOS 

Supply 

Voltage (V) 
0.8 1 1.8 3.3 

Activation 

Function 

Step 

and 
Sigmoid 

Step 

Step, 

Sigmoid, 
ReLU 

Nonlinear 

Temporally 
Dynamic 

Power/neuron 

µW 
15.62 NA 0.55 

31.4 (spike) 

23.1 (burst) 

Average 
Power (Total) 

4mW NA 140.6µW 753µW 

Energy per 

spike 
990fJ 380fJ 13.5fJ 

179nJ(spike) 
330nJ(burst) 
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