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Abstract— Biological neurons exhibit rich and complex non-
linear dynamics, which are computationally expensive and
area/power hungry for hardware implementation. This paper
presents a mathematical analysis and hardware realization of
neural networks using a nonlinear neuron model that utilizes
two excitable systems operating at different timescales. The
neuron consists of a mixed-feedback system operating at multiple
timescales to exhibit a variety of modalities that resemble the
biophysical mechanisms found in neurophysiology. The single
neuron dynamics emerge from four voltage-controlled current
sources and feature spiking and bursting output modes that
can be controlled using tunable parameters. The bifurcation
structures of the neuron, modeled as a 4D dynamical system,
illustrate the roles of sources acting on different timescales
in shaping neural dynamics. A comprehensive understanding
of the system’s dynamic behavior is obtained by studying the
state space variables and performing bifurcation analysis on the
different parameters. The model is implemented to a 1mm x
2mm prototype chip utilizing the 180nm CMOS process. Each
neural network consists of 1 isolated test neuron and 5 fully
connected neurons using 20 synapses. By carefully selecting
bias voltages according to the I-V characterization curves, the
neurons are shown to exhibit spike, burst, and burst excitable
behavior. Multiple small-scale neural networks with inhibitory
or excitatory synapses were verified to achieve coupled rhythms
with neuron bursts in-phase or out-of-phase. To demonstrate an
application, the generated burst waveforms from the 4-neuron
network were used to form a Central Pattern Generator (CPG)
for locomotion control of the four legs of the Petoi, a quadruped
robot, enabling the bot to jump successfully.

Index Terms— Neuromorphic, bio-inspired, nonlinear dynam-
ics, mixed-feedback control, coupled neural networks.

I. INTRODUCTION

ARTIFICIAL Neural Networks (ANNs), and their capabil-
ity to address complex tasks with high efficiency have
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attracted remarkable interest for more than a decade [1].
Neuron models used in ANNs are highly simplified in function
and operation, to facilitate scaling to large networks. The most
popular implementation that is widely adopted in modern AI
hardware is the Rectified Linear Unit (ReLU) [2], [3]. The
ReLU neuron primarily realizes a linear activation function for
all positive inputs, while rectifying negative inputs to zero, thus
introducing a simple form of nonlinearity, as shown in Fig.1.
Such a simplified model was sufficient to train large networks
with the backpropagation algorithm and yield exceptional
accuracy, though it is not a bio-mimetic neuron model since
it does not generate ‘spikes’ and neglects the highly nonlinear
nature of neurons and their temporal dynamics. On the other
hand, Neuromorphic Spiking Neural Networks (SNNs) [4],
[5], which intend to be bio-inspired, use a Leaky Integrate-
and-Fire (LIF) neuron that can generate voltage spikes or
‘events’ similar to biological neurons. The LIF neuron is
implemented using an RC network that linearly integrates
an applied external current to produce a voltage ramp [6],
[7], [8], [9]. The LIF generates a spike once the ramp input
exceeds a predefined threshold, after each integration cycle.
Thus, the LIF neuron realizes the step activation, which is
also a simple form of nonlinearity generating ‘all-or-nothing’
events as voltage spikes. SNN mimics biology better than
ANN, however, still fails to capture the temporal dynamics
of biological neurons to exhibit more complex behavior such
as burst generation. Though ReLU and LIF neurons have
been extremely successful when used in a predominantly
feed-forward network, they are not suitable to demonstrate
neuroscientific principles such as multiple modes of operation
(spiking, bursting, etc), coupled oscillations with excitatory
and inhibitory connections controlled through a single param-
eter: external applied current (Iapp), and bursting rhythm
generation with neurons in-phase or out-of-phase.

Biological neurons exhibit rich nonlinear dynamics both
at the single neuron level and at the network level, which
is enabled through neuromodulation, using multiple feedback
paths (local and global) operating at multiple timescales [11],
[12]. Complex neuron models inspired by neurophysiology
have been proposed before, like the Hodgkin-Huxley model
[13] and the Izhikevich model [14]. These models capture
the biophysics of the neuron accurately but are based on
non-intuitive computationally expensive differential equations
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Fig. 1. Neuron activation functions for (a) Spiking Neural Networks (Step)
and (b) Artificial Neural Networks (ReLU).

that are hard to implement on hardware with minimal circuit
elements. Previous work has shown that neuromodulation
of a single neuron can be efficiently implemented using a
nonlinear circuit model with mixed feedback paths (positive
and negative), operating at different timescales [15]. Realizing
this dynamic neuron model on hardware could result in
the development of Bio-mimetic Neural Networks (BioNN).
A critical application of BioNN is the demonstration of a
potential implementation of the Central Pattern Generator
(CPG) network that can generate rhythms consistent with those
believed to underlie mammalian locomotion [16].

CPGs are highly optimized neural circuits found in the ner-
vous systems of animals, responsible for generating rhythmic
and coordinated patterns of activity to enable movement such
as walking, swimming, or flying. These specialized networks
exhibit a remarkable ability to produce rhythmic behaviors
without requiring continuous sensory input or higher-level
control. CPGs are often located in the spinal cord or other
central nervous system regions and consist of interconnected
neurons that communicate through intricate synaptic connec-
tions. The coordinated firing of these neurons generates a
repetitive and robust pattern of activity, allowing animals
to engage in rhythmic motions essential for their survival
and locomotion. CPGs not only provide insight into the
fundamental principles of neural circuitry but also serve as
a source of inspiration for the development of bio-inspired
robotics and control systems [17], [18], [19], [20], [21],
[22], [23], with potential applications in fields ranging from
healthcare to autonomous vehicles. Efforts have been made to
utilize a more bio-inspired neuron model such as the Hudgin-
Huxley (HH) model [13], and the Izhikevich (IZ) model
[14]. The HH model and related variants based on the HH
formalism provide the most complete modeling framework
typically used to represent biological neurons, while the (IZ)
model is a mathematically simplified version that captures the
dynamic of its biological counterpart but not necessarily in
a bio-physically meaningful manner [11]. Both suffer from
poor compatibility with hardware implementations given the
complexity of their describing equations which is intensely
computationally expensive. According to the biophysics of
neuron cells, neuron operation can be described as a non-linear
dynamical system with multiple feedback loops working in
different time scales [12], [24], [25]. Inspired by such elegant
architecture, Ribar and Sepulchre [10], [15] introduce a novel
model that sufficiently captures the temporal dynamics of bio-
logical neurons, resulting in tonic spiking, and tonic bursting
[24], and is hardware-friendly. This bio-mimetic neuron model

can be controlled at single neuron level or network level
through modulation of a single parameter: the external applied
current (Iapp). Such an approach could potentially bridge the
gap between complexity and hardware feasibility and pave the
way for further improvement in this field.

This paper is an extension of our previous work presented
at the ISCAS conference [26], with significant improve-
ments such as an upgraded chip design, additional analysis
and measured results of several neural networks including
a demonstration of the CPG network for robot locomotion
control. This paper presents a mathematical analysis and
Application Specific Integrated Circuit (ASIC) implementation
of the nonlinear neuron model proposed in [15]. Section II
presents a concise overview of the nonlinear neuron model.
Section III presents the bifurcation study of the nonlinear
dynamical system of equations and its implications in under-
standing how to tune the proposed neuron model. Section IV
illustrates the chip architecture of the neural network circuit
design. Section V reviews the measured result of the proto-
type chip at both the single neuron level and network level,
including a robot control application. Section VI provides a
detailed discussion to explain about the significance of the
contributions of this work by comparing with other state-of-
the-art biophysical neuron models (neurons that can produce
bursting behavior) in the literature. This section also mentions
our planned future work in this direction. Section VII provides
a comprehensive summary of our work, concluding the paper.

II. BACKGROUND

The neuron plays a pivotal role as one of the two primary
components within both biological neural circuits and ANNs.
Remarkable advancements in machine learning algorithms
have often overshadowed the importance of revisiting the
neuron’s fundamental characteristics. Consequently, the major-
ity of research articles tend to concentrate on algorithms to
improve network efficiency. While this focus was adequate
in the past, the ubiquity of AI-based devices in our daily
lives and the pressing issue of excessive resource and power
consumption highlight the need for an innovative neuron
model that closely emulates biological counterparts, especially
in edge computing applications.

Numerous distinct neuron models have been proposed,
each offering its unique set of advantages and disadvantages.
However, these models generally prioritize different levels of
biological realism while overlooking the complexities of hard-
ware implementation. Izhikevich, for example, categorized
various neuron models based on their dynamic behaviors and
degrees of biological fidelity [11]. Implementing these neuron
models in hardware is feasible, provided sufficient resources
are available. Nevertheless, when it comes to dedicated appli-
cations and ASIC design, selecting an appropriate model
that accurately represents neuron dynamics and is easy to
implement becomes a formidable challenge. Moreover, if the
underlying equations governing the neuron model are overly
complex, scaling up the size of neural networks, particularly
using conventional digital design approaches, becomes exceed-
ingly complicated and resource-intensive. A potential solution
lies in rigorously assessing the application’s requirements

Authorized licensed use limited to: University of Pittsburgh. Downloaded on September 06,2024 at 03:06:09 UTC from IEEE Xplore.  Restrictions apply. 



916 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 13, NO. 4, DECEMBER 2023

Fig. 2. Construction of the bio-mimetic neuron model by combining two excitable systems working at different timescales. An excitable membrane modeled
as a highly parallel circuit, including a passive RC network and four voltage-gated conductance channels inspired by the Na+/K+ ion channels found in
neurophysiology. Each color represents a different timescale [10]. The fast (pink) negative conductance (i−f ) operates in microsecond (µs) range, the slow
(yellow) positive (i+s ) and slow (yellow) negative (i−s ) conductances in millisecond (ms) and ultra-slow (green) positive conductance (i+us ) in 100ms range.

and identifying the essential dynamic behaviors of neurons.
Subsequently, optimizing the design methodology becomes
imperative to achieve a hardware-friendly realization.

One promising neuron model, proposed in a study by
Ribar et al. [15] and closely resembling the physiological
neuromodulation of a single neuron, offers not only ease of
hardware implementation but also great potential at network
scale modulation. Drawing inspiration from the biophysics
of actual neuron cells, this model comprises multiple gated
current sources operating at different time scales, akin to the
ion channels found in cell membranes. This neuron model is
constructed by interconnecting an excitable system, which will
be comprehensively described in the subsequent sections.

The schematic of the neuron model is illustrated in Fig. 2.
This neuron model comprises the interconnection of two
excitable systems operating at different time scales. Each
excitable system is composed of two voltage-controlled current
sources (VCCS) and a passive circuit with a Resistor-Capacitor
(RC) configuration. By connecting these two excitable systems
in parallel, we establish a common equivalent passive system
between them. The relationship between current and voltage in
each VCCS is Ix = f (Vx ) = T anh(vx ) where x indicates the
internal time scale of the excitable system. The VCCS will be
realized using a straightforward Operational Transconductance
Amplifier (OTA), where the design methodology will be
presented in the upcoming section.

The neuron model, as illustrated in Fig. 2, has the capability
to generate tonic spiking and bursting [27], which are essential
for realizing a CPG applicable in robotics and locomotion. Fur-
thermore, once the neuron parameters are initially configured,
the operational mode can be seamlessly switched between
spiking and bursting solely by adjusting the applied current
Iapp, mimicking the behavior of actual neurons. These dis-
tinctive characteristics make this model a promising solution
for a wide range of applications.

III. BIFURCATION ANALYSIS

Studying dynamical systems involves comprehending the
equilibrium points and ways in which their existence and
stability change as system parameters are varied, which are
commonly referred to as bifurcations. Bifurcation is a concept
that is widely used in various fields, including mathematics,
physics, biology, and engineering. It refers to the process or
occurrence of a system undergoing an abrupt change in behav-
ior as a result of a small, gradual change in its parameters. The
current section is dedicated to providing a summary of the

analysis method that has been used in this paper to analyze
the dynamical system. Initially, an overview of the excitable
system and its complete study will be presented then the
section will be completed by providing the analysis of the
full neuron model.

A. Neuron Excitable Behavior

According to Sepulchre et al, excitability is the ability of
a system to respond to pulse inputs in an all-or-none manner.
Given a system in an equilibrium state, a small input per-
turbation causes a small output change, however, amplifying
the perturbation beyond a certain limit leads to large output
variation [28]. Such behavior is primarily observed in neurons,
where membrane voltage generates an action potential in
response to sufficient current flow within neurons [29]. This
system can be decomposed into three distinct elements: a
passive circuit, a switch, and a regulator. A monotonic (I −V )

curve accounts for the passive behavior, a switch accounts for
localized temporal dynamical behavior, and a regulator provide
a temporal control method to achieve the refractory method.

To have a system capable of showing the dynamical behav-
ior of interest, one positive and one negative feedback with
variable gains and opposite signs that are working in different
time scales are necessary. Depending on which feedback loop
dominates the other locally, the static I-V characteristic curve
of the system can be monotonic or hysteretic. Reference [28]it
is intuitive to understand the reason for such a requirement.
Positive feedback by its nature is a reinforcement factor that
amplifies the sampled output by a gain and adds this to the
input. Such a condition in the electronic system results in
the saturation of the system output to the maximum available
output. To prevent such an occurrence a counter-force, negative
feedback, is necessary to release the system from saturation.
Having two competing forces is necessary but not sufficient
to generate complex dynamical behavior as long as they are
working on the same time scale. By introducing different time
constants for positive and negative feedback gain, the system
can show various local temporal behaviors according to the
relative strength of feedback loops.

Multiple realization methods exist for an excitable system,
each capable of capturing different ranges of physiological
neuron behaviors. Various form of bursting and their mecha-
nism are studied here [30]. Our method prioritizes simplicity in
hardware implementation while demonstrating two prominent
types of neuron behavior: tonic spiking and tonic bursting. The
advantage of the excitable system as shown in Fig. 2(Left),
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is being hardware friendly and expandability by simply paral-
leling a single block to generate more complex behavior that
will be discussed in the neuron model section. Considering
all the requirements, the model in Fig. 2 (Left) [10] is being
used.

CV̇m = −(I+p (Vm) + I−f (V f ) + I+s (Vs) − Iapp)

τ f V̇ f = Vm − V f

τs V̇s = Vm − Vs

× (ϵ =
τ f

τs
≪ 1) (1)

where the I+p is a monotonic passive element with a positive
slope, I±x = α±

x tanh(Vx − δ±x ) is VCCS to realize the switch
and regulate components, where the subscript represents the
time scale (x = f ) for fast and (x = s) for slow and
superscript indicate the sign of the gain. Finally, Iapp is an
external current injected into the system. Given the complexity
involved in analyzing the excitable system due to its nonlinear
nature, the study of the problem has been simplified by
isolating one parameter at a time and investigating its effect.

B. Analysis Methods

The proposed excitable system according to Eq.1 and sub-
sequent equation of the complete neuron model comprise an
autonomous system of ordinary differential equations (ODEs).
An autonomous system of ordinary differential equations
(ODEs) refers to a set of equations that describe the behavior
of a dynamical system without explicit dependence on time.
In such systems, the rates of change of the variables are solely
determined by the current state of the system itself, rather
than being influenced by an external time parameter. This
characteristic gives autonomous ODE systems a self-contained
nature, where the evolution of the variables is solely governed
by the interplay between their current values. To analyze the
autonomous system of ordinary differential equation (ODE)
the following steps are followed:

1) Reduce the dimension of the system given the time-scale
separation

2) Find equilibrium points (EQP) and nullclines(NC) of
systems

3) Linear approximate system in the neighborhood of the
EQP

4) calculation of eigenvalue and classifying the EQP type
based on Poincare’s diagram

5) Estimate the behavior of the system given its linearized
phase portraits following the Hartman-Grobman theorem
[31].

To simplify the mathematical solution without loss of gen-
erality, we set δ±x = 0 and −|α−

f | = |α+
s | = α(α > 0),

C = 1 and ϵ = 0.02. It is worth noting that the shape of
the curve in a bifurcation diagram will vary depending on
different parameter values and will not remain linear. Given
adequate time-scale separation, ϵ ≪ 1 and having sufficiently
small τ f the fast subsystem follows the membrane voltage
instantaneously, therefore, the system can be simplified to a
well-known 2D system of ODE as follows:

F(Vm, Vs) ≜

Fig. 3. Eigenvalues of the Jacobian matrix of a linearized system vs. Iapp .
−|α f | = |αs | = 2, |δ f | = |δs | = 0, ϵ = 0.02. (a.u stands for arbitrary unit).

V̇m = −(Vm − α tanh(Vm) + α tanh(Vs) − Iapp)

G(Vm, Vs) ≜ Ts V̇s = Vm − Vs (2)

The nullclines of a 2D system is calculated by (V̇m = 0)
and (V̇s = 0):

Vm − α tanh(Vm) = −α tanh(Vs) + Iapp

Vm = Vs (3)

The equilibrium points, the intersection of the two null-
clines, given the previous assumption, will be (Vs, Vm) =

(Iapp, Iapp). A common approach to analyzing a system with
a complex nonlinear function is to perform a linearization in
the vicinity of an EQP and study the behavior of the linearized
system. The linearized system is derived by forming the matrix
of partial derivatives of the nonlinear equations with respect
to the variables and evaluating them at the EQP, also known
as the Jacobian Matrix. Although the linearization introduces
some approximation error, it allows us to gain insights into the
system’s stability, controllability, and observability, which are
essential for designing control strategies and understanding its
overall behavior. The approximated system behavior can be
extended to its original non-linear counterpart as long as all
eigenvalues have a nonzero real part according to the Hartman-
Grobman theorem. [31] The Jacobian matrix of the Eq.2 will
be:

J =

[
∂ F
∂Vm

∂ F
∂Vs

∂G
∂Vm

∂G
∂Vs

]

=

−1+α(1−tanh2(Vm ))
C

−α(1−tanh2(Vs ))
C

1
Ts

−1
Ts

 (4)

The eigenvalues of the Eq.4 are used to study and categorize
the behavior of the EQP given the Poincare classification
of an autonomous system. Fig. 3 illustrates the eigenvalues
for different EQP given various Iapp. In addition, Fig. 4
emphasizes the (Iapp) bifurcation diagram given the different
results of eigenvalues, where the red indicates the periodic
solution for a given Iapp and the blue illustrates the stable
solution. At the boundary of the transiting from the stable EQP
to the periodic solution a Hopf bifurcation is happening. When
a dynamical system undergoes a Hopf bifurcation, it transitions
from a stable equilibrium state to a limit cycle, giving rise to
sustained oscillations.
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Fig. 4. Bifurcation diagram of an excitable system Eq.5 vs. Iapp .
−|α f | = |αs | = 2, |δ f | = |δs | = 0, ϵ = 0.02.

Fig. 5. Effect of time scale separation (ϵ) on Jacobian matrix in
complex plane for different Iapp . Each point indicates different Iapp .
−|α f | = |αs | = 2, |δ f | = |δs | = 0.

Fig. 6. Phase portrait and trajectory of the solution in vector-field coordinates.
−|α f | = |αs | = 2, |δ f | = |δs | = 0 and Iapp = 0, ϵ = 0.02.

Furthermore, Fig. 5 highlights the significance of the time-
scale separation. As ϵ increases, all the eigenvalues will be
located on the left-hand side (LHS) of the complex plane
where all the real parts are negative, meaning the stable EQP of
the dynamical system and eliminated the possibility of having
unstable EQP which is necessary for excitable behavior.

Finally, a solution of the system (orange) together with
phase portrait (red and blue) is shown in the vector field of
the system in Fig. 6 and its steady state behavior in Fig. 7.

The study will not be complete unless the effect of param-
eters on the global behavior of a system, such as amplitude
and frequency is addressed. Many ways could be opted to
describe the relation between amplitude and frequency. Here
a potential explanation is provided in a qualitative manner
since it makes understanding the underlying operation easier.
Fig. 8 includes three trajectories given different parameters.
The black trace, a base solution with previously mentioned
parameters, and the red and blue traces with different values

Fig. 7. The steady state voltage response of the fast and slow elements.
−|α f | = |αs | = 2, |δ f | = |δs | = 0, Iapp = 0 and ϵ = 0.02.

Fig. 8. Effect of |α f | and |αs | on the trajectories and overall transient
behavior of the system. |α f | = |αs | = 2 (black), |α f | = 3, |αs | = 2
(red) and |α f | = 2 |αs | = 3 (blue). In all scenarios |δ f | = |δs | = 0,
Iapp = 0 and ϵ = 0.02. The result highlights that the fast element gain
controls the amplitude of the membrane (Vm ) while the slow element gain
modulates the frequency by shrinking the (Vs ) travel.

Fig. 9. Neuron membrane voltage Vm for different values of |α f | and |αs |.
In all scenarios |δ f | = |δs | = 0, Iapp = 0 and ϵ = 0.02.

for α−

f and α+
s respectively. The fast element gain acts as

a stretch operator that tends to keep the aspect ratio of the
trajectory the same. Since both Vm and Vs feel the effect
relatively with the same strength, the fast element can be
used for tuning both the amplitude and frequency at the same
time, while the slow element gain it has a negligible effect on
Vm axis and predominantly shrink the maximum swing of Vs .
The smaller the swing the faster it can be reached therefore
the slow element gain can be considered as a controlling
agent of the frequency with negligible effect on amplitude.
Fig. 9 illustrates the steady state behavior of membrane voltage
according to the Fig. 8 parameters.

C. Neuron Model Analysis

A 2D excitable system (Vm, Vs) similar the one introduced
in Eq.1, is incapable of bursting. Bursting is a transition
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Fig. 10. Bifurcation structure for the fast (Vm , V f ) subsystem with Vs treated
as a bifurcation parameter.

between spiking and resting potential that is repeated over
time. According to Izhikevich, the bursting is caused by the
modulation of a fast subsystem by a slow variable [30].
To address this issue, another excitable system that is working
on a slower time scale can be introduced. The first excitable
system, which is responsible for the spike generation is called
fast excitable with (τ−f and τ+s ) as its time scale parameters,
and the new one is called the slow excitable with (τ−s and
τ+us) timescale parameters. The slow excitable system should
follow a slower time scale so that it does not interfere with the
spike generation but is adequate to cause a transition between
periodic spiking dynamics and resting dynamics, to generate a
bursting behavior. The system is formed by coupling the fast
excitable and slow excitable systems together to satisfy the
requirement for a neuron model capable of showing burst and
spiking behavior [10], [15]. The final neuron model is shown
in Fig. 2 and its governing system of equations, is presented
in Eq.5.

CV̇m = −(I+p (Vm) + I−f (V f ) + I+s (Vs) + I−s (Vs)

+ I+us(Vus) − Iapp)

τ f V̇ f = Vm − V f

τs V̇s = Vm − Vs

τus V̇us = Vm − Vus

× (τ f ≪ τs ≪ τus) (5)

Given the timescale separation, the dimension of the system
can be reduced to a 3D system, by setting the fastest gating
variable equal to its steady state. however, the previous study
for the excitable system cannot be applied since the system
is not a 2D system. An extra step is needed to reduce
the dimension of the system so that the previous step can
applied in the analysis of the neuron model. A potential way
to study the spiking behavior is since the τus is relatively
slower than others, Vus can be considered a fixed constant
while the dynamic behavior of other variables is investigated.
Fig. 10 shows the bifurcation diagram of a system with Vs
as its bifurcation parameter where Vus = 0.09. The Iapp =

0 selected to ensure the system is in spiking mode according
to [15]. The similarity of the curve with the excitable study
emphasizes that a single excitable system is adequate to
generate spiking behavior considering our choice of realization
method. By setting the system in busting mode [15], the

Fig. 11. Bifurcation structure for the (Vm , V f , Vs ) system with Vus taken as
the bifurcation parameter. The family of unstable periodic orbits is born in a
Hopf bifurcation near Vus = −3.2 and terminates in a homoclinic bifurcation
near Vus = −1.7.

Fig. 12. Steady state behavior of the bio-mimetic neuron model for different
modes of operation, modulated by external applied current, Iapp .

same bifurcation analysis is done by assuming the Vus as the
bifurcation parameter.

The blue traces are stable EQP, while the red traces denote
unstable EQP. The orange traces are the projection of the
oscillating trajectory in this system, corresponding to a spike
and burst in Fig. 10 and Fig. 11 respectively. In Fig. 11
cyan trace denotes maximum and minimum Vm values along
unstable periodic orbits and green traces denote maximum and
minimum Vm values along stable periodic orbits. When we
allow Vus to evolve slowly, it drifts towards more negative
values while the remaining variables are near their resting
values (lower part of burst solution, along blue curve in
Fig. 11). When Vus is sufficiently negative, the system of
other variables undergoes a saddle-node bifurcation and the
trajectory jumps to the attracting branch of stable period orbits
of that system. This leads to spiking behavior, and as this
continues, the net drift of Vus is towards less negative values
(to the right in Fig. 11). Finally, Vus reaches the value where
the periodic orbits terminate in a homoclinic bifurcation (near
Vus = −1.7), and the trajectory jumps back down to near the
resting state for the other variables once again.

The bifurcation study of the system distinguishes the roles
of different voltage terms (state variables) in producing the
solutions observed in the steady-state response simulations
and phase portrait. Fig. 12 shows the steady state response of
the neuron model under different modes of operation: spiking,
bursting and burst excitable, modulated by a single parameter:
the external applied current, Iapp. In simulation of Fig. 10,
Fig. 11 and Fig. 12 the −|α−

f | = |α+
s | = 2, −|α−

s | =
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Fig. 13. Chip circuit diagram. (a) Network level diagram. 5 out of 6 neurons are fully connected with each other using tunable synapses. One isolated neuron
is designed for I-V characteristic study. (b) Circuit diagram of a neuron. 4 parallel connected conductance channels and a passive RC circuit are included.
The external current is controlled by 2 PMOS and an OTA. (c) Circuit diagram of conductance channel. The left OTA works as a tunable delay element and
the right OTA provides the nonlinear transfer function. (d) Differential amplifier topology for Operational Transconductance Amplifier (OTA) used in synapse
and neuron circuits. OTA consists of 5 MOSFETs. Output current iout of the OTA is determined by the voltage Vb and the difference between V+ and V−.

|α+
us | = 1.5 and |δ−f | = |δ+s | = 0, |δ−s | = |δ+us | = 0 and

(τ f = 1, τs = 50, τus = 2500).

IV. HARDWARE IMPLEMENTATION

This section describes how the neuron model, proposed
in [15] and analyzed extensively in the previous section,
is realized on silicon hardware with TSMC 180nm process
technology. In addition to implementing single-neuron circuits,
the test chip implements bio-mimetic neural networks inter-
connected with tunable synapses in order to test and validate
network-level behavior.

A. BioNN Architecture

Fig. 13 shows the detailed architecture block diagram of
the test chip. The chip consists of 2 bio-mimetic neural
networks (BioNN) and each of them contains 6 neurons and
20 synapses. Within each neural network in the chip, 5 out
of 6 neurons are fully interconnected to each other with
two synapses between each pair of neurons and one isolated
neuron for single neuron testing, as shown in Fig. 13(a). The
circuit model of the individual neuron is shown in Fig. 13(b),
as described in the background section. The membrane voltage
outputs of the six neurons in each of the 4 networks are sent
to voltage buffers that can drive large capacitive loads and
enable accurate probing of the internal voltages. All neurons
in the chip share common input bias voltages and bias currents,
while the external stimulus current is set by two different
voltages, vtune1 for the neurons N1, N2, N3 and vtune2 for the
remaining 3 neurons N4, N5, and N6 of the 6-neuron network.
For neuron network 1, the passive resistor Rp in each neuron
is set to 1M�. For neuron network 2, Rp is set to 10M�,
to provide a different range for passive current and explore
the operating range of the neuron.

B. Circuit Design

Fig. 13(b) shows the circuit implementation of the neuron.
4 conductance channels are connected in parallel with a pas-
sive RC circuit. The 20pF membrane capacitor is replaced with
M1 MIMCAP(Metal-Insulator-Semiconductor) with a small
area. The 1M� and 10M� passive resistors are implemented
with High-Resistance-Poly (HRP) material. A series NMOS
transistor is connected to the passive resistor in order to limit
the current Ip by tuning the gate voltage Vbres . In spiking

Fig. 14. Synapse circuit design. Membrane voltage of pre-neuron Vpre and
bias voltage Vsyn are connected to two 2-to-1 MUX, which decide the polarity
of the synapse to be inhibitory or excitatory.

and bursting modes, the neuron membrane voltage has large
excursions from 0V to 3.3V (VDD), and so will the current
through the passive resistor swing from 0-3.3µA. Without the
series connected NMOS gating, this current will affect the
behavior of the neuron significantly, since the current needed
to change behavior is only a few µA. The external current Iapp
is controlled by 2 series-connected PMOS and an operational
transconductance amplifier (OTA), as shown in Fig. 13(b).
The operating points of M2 and M3 are carefully set using
the OTA-based feedback circuit such that the current through
M2 is decided by Vtune. In weak inversion region, the I-V

relationship for M2 can be described as IDS = I0e
K VGS
nVT (1 −

e
−VDS
nVT ) where VDS = Vtune − Vmem and VGS = Vtune − VG .

The voltage drop of VGS for M2 could be treated as a constant
value. So the current through M2 and M3 are simply decided
by Vtune when the neuron is resting.

The circuit schematic of the negative conductance channel
is shown in Fig. 13(c). It consists of 2 OTA and a latency
capacitor. The circuit of the OTA, implemented using a simple
differential amplifier topology, is shown in Fig. 14 (right).
The simple circuit helps in reducing the area footprint of
the neuron. It consists of 5 MOS transistors, two of which
are PMOS and three are NMOS. The width and length
of the PMOS M1 and M2 are 2.4µm and 1.6µm respec-
tively. The NMOS M5 has the same length and width as the
PMOS. The differential pair NMOS transistors M3 and M4 are
designed with 600nm width and 400nm length. The first OTA
of the conductance channel acts as a voltage-follower with
a delay that is tuned by the bias voltage, VT x . The second
OTA provides the nonlinear transfer function, which can be
the hyperbolic tangent function in the weak inversion region
or can be a quadratic function if the transistor operates in
strong inversion. The gain of the OTA, α is positive and set by
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Fig. 15. Micrograph photo of the BioNN chip. Implemented in 180nm CMOS
technology, the total chip area is 1mm x 2mm.

TABLE I
NEURON BIAS VOLTAGE PARAMETERS FOR ALL MODES

the bias voltage vb where increasing vb causes the amplitude
of the transfer function to increase. The slope and offset of
the transfer function can be tuned by bias voltages vb and vδ

respectively. Positive and negative feedback of the dependent
current source is obtained by flipping the positive and negative
terminal of the second OTA.

Neurons are connected with tunable synapses which can be
selected to be excitatory or inhibitory. The tunable synapse is
designed with the same OTA implemented in the conductance
channel, as shown in Fig. 14 (left). The membrane voltage of
the pre-synaptic neuron and offset voltage Vsyn are connected
to the input terminals of the OTA. Two 2-to-1 multiplexers
are used for polarity reversal and hence enabling an excitatory
or inhibitory connection between the pre-synaptic neuron and
post-synaptic neurons. When Vpre is connected to the positive
input and Vsyn is connected to the negative, the synapse
inhibits the post-synaptic neuron. When the input terminals
are reversed by switching the MUX select bit, the synapse
excites the post-synaptic neuron. The voltage bias Vb tunes
the transconductance gain of the OTA, Gsyn which sets the
synapse strength/weight.

V. MEASUREMENT RESULTS

Fig. 15 is the micrograph of the prototype BioNN chip
fabricated on 180nm process technology. The supply voltage
is 3.3V and the total chip area is 1mm x 2mm. The area
occupied by a single neuron is 70µm x 37µm and the area
occupied by a neural network (BioNN) of 6 neurons and
20 synapses is 0.32mm x 0.17mm. Table I provides the bias
voltage parameters used for testing single neurons and neural
networks implemented using the BioNN chip.

A. Single Neuron

One neuron in each network is isolated with no synapses
or internal Iapp generation circuit (transistors M2, M3 and the

Fig. 16. On top, I-V curve for fast negative conductance channel when
Vbα increases from 0.76V to 1.1V. Amplitude of the I-V curve increases
accordingly. On the bottom, I-V curve for fast negative conductance channel
when Vbδ changes. The center axis of the decreasing area of the I-V curve is
shifting from left to right when Vbδ is increasing from 1.3V to 2V.

OTA using vtune in Fig. 13 (b)) for single neuron characteriza-
tion study. The I-V curve measurement of the isolated neuron
will be used as the reference for tuning the dynamical behavior
of the BioNN network. To generate I-V curve at different
timescales, the isolated neuron circuit must parallelly connect a
passive RC circuit with the relevant conductance channels. For
the I-V curve at fast timescale, the fast negative conductance
channel is chosen where the membrane voltage is swept from
0V to VDD (3.3V) and the current consumption is measured.
When Vb increases from 0.76V to 1.1V, the amplitude of
the I-V curve increases from 1µA to 9µA accordingly as
shown in Fig. 16 (top). The larger current value provides a
wider range for neurons to spike or burst, resulting in robust
behavior. On the other hand, when Vδ is swept from 1.3V to
2V and other conditions remain the same, the central axis
of the decreasing area in the I-V curve shifts accordingly,
as shown in Fig.16 (bottom). Staggering the position of the
fast conductance center axis and slow negative conductance
center axis allows neurons to exhibit burst of spikes and resting
periods alternatively.

The blue and red curves in Fig. 17 (left) are the bistable
I-V curves for the fast and slow excitable circuits respectively.
The black curve shows the overall I-V relationship when all
4 conductance channels in parallel (fast negative, slow positive,
slow negative and ultraslow positive) are involved. As shown
in Fig. 17 (left), when the voltage increases from 0 to 3.3V,
the current changes accordingly and traces an “N” shape
for both fast (blue) and slow (red) excitable circuits. This
confirms the nonlinear operation of the combination of voltage
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Fig. 17. Isolated neuron measurement results. On the left is the I-V characterization curve measured for different timescale conductance channels parallelly
connected with passive RC circuit. Blue: Fast negative conductance channel. Red: Slow negative conductance channel. Black: Cumulative current for
4 conductance channels. On the right, is the neuron membrane voltage in spiking and bursting modes. (Top) Spiking mode with Iapp = 4µA. (Bottom)
Bursting mode with Iapp = 2µA.

Fig. 18. Measured results of a neural network with two neurons, in bursting
mode, without synapses (weak strength). The phase relationship between the
two neurons bursting is arbitrary since there is no synaptic coupling.

dependent current sources i f
−, is

+, is
− and ius

+ and enables
the necessary bistability (local maxima and minima) condition
required to generate limit cycles during bifurcation with Iapp,
as discussed in the previous section and also described in [15].
The overlap of the decreasing region, when voltage is around
1.4-1.8V, for both excitable circuits indicates the external
current range needed to trigger bursting behavior. In this case,
the burst range for external current is from 1µA to 4µA.
When the external current is along the fast excitable decreasing
region but out of the slow excitable decreasing region, the
neuron exhibits spiking behavior. Quantitatively, when the
external current Iapp ranges between 4µA to 7µA, the single
neuron will spike. Hence, it is possible to determine the range
of externally applied current for the neuron to produce spiking
and bursting behavior.

Fig. 17 (right) shows the isolated neuron membrane voltage
waveform in spiking and bursting modes. When external
current iapp is 4µA the neuron generates voltage spikes (red
waveform) rising from 0.62V to 3V in 1.84ms. The average
spike period or Inter Spike Interval (ISI) is 2.82ms resulting
in a spike frequency of 357Hz. The blue waveform shows the
bursting behavior of the neuron when iapp is 2µA, which is
in the overlap area of the decreasing regions of the fast and
slow I-V curves. There are 3 spikes for every burst and the
average burst period is 7.68ms, leading to intraburst frequency
of 391Hz. During bursting, the membrane voltage rises from

0.62V to 3V. The interburst period is 4.5ms and the resting
voltage swing is within 0.2V.

B. Neural Network

The single isolated neuron characterization study with an
external applied current provided the operating range for the
spiking and bursting modes for the neuron. The next step
is to setup different network topologies with the remaining
5 neurons in the network, interconnecting them with synapses
that can be configured to provide excitatory or inhibitory
synaptic currents, along with the tunable internal applied
current. All possible configurations of a two neuron network
are explored, where both neurons are tuned to burst and
they have excitatory or inhibitory or no synaptic connections
between them. Modulating the excitability of a neuron has a
profound influence on the behavior not only at the neuron scale
but also across scales [25]. This neuromodulatory behavior
is best illustrated in two fundamental interconnection motifs
that have been extensively studied in neuroscience: the I-I
motif and the E-E motif. The I-I/E-E motif is a symmetric
inhibitory/excitatory interconnection between two neurons,
each controlling a network inhibitory/excitatory synaptic cur-
rent into the other neuron.

Two neurons in the network are setup to burst with the
interconnecting synapses disabled, as shown in Fig. 18. In this
case, the bursting rhythms by the two neurons are uncorrelated
since the synapse has minimum weight (negligible Gsyn). For
neuron N1 (red curve), each burst includes 4 to 5 spikes, while
neuron N1 (blue) has 2 spikes per burst. In both neurons,
the interburst period is set to 4.5ms. The different spikes per
burst in the two neurons, even though all other parameters are
the same, can be due to inherent random noise variation in a
highly nonlinear system or possible device mismatch. When
the two synapses between these two neurons are configured
in excitatory mode, the membrane voltage of the two neurons
is synchronized as shown in Fig. 19 (left), demonstrating the
E-E motif found in neuroscience. Once synchronized to be
“in-phase”, it turns out that the number of spikes per burst
approaches the average value of the 2 neurons, and hence
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Fig. 19. Measured results of a neural network with two neurons in bursting mode with two excitatory synaptic connections (E-E motif on left) and two
inhibitory synaptic connections (I-I motif on right). The phase of bursting is synchronized for the E-E motif where the number of spikes per burst is averaged
out. For I-I motif, the neuron bursts/spikes are out of phase.

Fig. 20. CPG network to control the four legs of the Petoi Quadruped bot (left). Membrane voltage of the four neuron network implemented using BioNN
chip to produce precise bursting rhythm for jump motion, with FL and FR in-phase with each other, as are BL and BR. The F pair is out-of-phase with the
B pair (middle). Each neuron controls one leg of the robotic dog. Photo of the Petoi, a dog-like robot dog with the four limbs labeled (right).

3 spikes per burst can be evidently seen. The interburst period
is the same as before the synapses were tuned.

Fig. 19 (right) shows the neuron membrane voltage when
the synapse changes from excitatory to inhibitory mode,
establishing the I-I motif. Here the expected result is that the
two neurons produce “out-of-phase” synchronization in the
bursting rhythms with the same number of spikes per burst.
Though the measured results show the expected out-of-phase
synchronization, the membrane voltage is barely bursting with
almost 1-1.5 spikes per burst. This behaviour is possibly due
to the timescale of the OTA-based synapse is much slower
than the neuron spike, resulting in the reduction of spikes per
burst. As shown in Fig. 19 (right), the intraburst period for
both neurons is measured to be 10ms, and so is the interburst
period. The spike amplitude of the neuron N1 is 2.4V and
the amplitude of neuron N2 is 3V. The future work will focus
on reducing the synaptic delay so that neurons can generate
multiple spikes in the bursting phase.

C. Application - Robot Locomotion

The I-I motif is central to the circuit neurophysiology of
CPG. To demonstrate an application with BioNN, a four
neuron network is set up as a CPG network to control the
motors of a quadruped (four legs) robot, Petoi Bittle, as shown
in Fig. 20 (left). The four neurons can be divided into two
pairs where two neurons controlling the front legs (front left:
FL and front right: FR) make one pair, and the two neurons
controlling the back legs (back left: BL and back right: BR)
make another pair. With proper tuning using the same bias

parameters discussed previously, the two pairs can be made to
burst in-phase i.e. FL and FR form an E-E motif, BL and
BR another E-E motif, whereas the pairs are out-of-phase
with each other, i.e. FL and BL form an I-I motif, FR and
BR form another I-I motif, as shown in Fig. 20 (middle).
Because the network is connected all-to-all with inhibitory
synapses, there is the potential for disinhibition to occur,
in which the activation of one neuron causes a net decrease in
the inhibition to one of the other neurons. This disinhibition
can give rise to an effective excitatory, and indeed FL and FR
behave equivalently to an E-E motif, as do BL and BR. Hence,
by tuning the four neurons in this particular setting leads to
a bursting rhythmic gait resulting in the robotic dog, Petoi,
jumping in a periodic manner.

Our previous work demonstrated robot locomotion through
bursting CPG rhythms programmed on the Arduino platform
[17]. In this study, the membrane voltages from two E-E motif
pairs were recorded from the BioNN chip and stored as the
CPG network output for the front leg and back leg pairs. The
stored voltage data was converted to spikes or events using a
simple thresholding scheme on the Arduino platform present
on the Petoi bot. The out-of-phase relationship between the
two E-E motifs was achieved by inserting a phase delay.
The Arduino board was programmed to send customized
motor commands to the servo motors on each leg, for each
spike in the bursting rhythm shown in Fig. 20 (right). The
bursting rhythm provides fine-grain motor control resulting in
a smoother movement of the legs, compared to spiking CPG
rhythms in other work [32]. The video that recorded the jump
behavior of the robot is available at youtu.be/7eQWEoVon9c.
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TABLE II
ARCHITECTURE AND PERFORMANCE COMPARISON WITH STATE-OF-THE-ART BIOPHYSICAL NEURON IMPLEMENTATIONS

VI. DISCUSSION

Previous work on bio-inspired neuron models implemented
on hardware such as the Hodgkin-Huxley, Morris-Lecar or
Izhikevich neurons have non-intuitive equations and parame-
ters, are computationally expensive and most importantly do
not enable neuromodulatory control with a single parameter
(Iapp) at a network level to realize fundamental motifs in
neuroscience such as the I-I motif. The bio-mimetic neuron
model considered in this work is based on an intuitive control
theory perspective comprising a mixed-feedback system (com-
bination of positive and negative feedback currents) operating
at multiple timescales (fast, slow, and ultraslow spanning µs
to 100ms) [15]. This model is simultaneously bio-mimetic,
by mimicking the Na+/K+ channel activation and deacti-
vation mechanisms found in neurophysiology, while being
hardware-friendly, with implementation using simple analog
delay elements and OTA-based nonlinear activation function
(tanh or quadratic). For the first time, to the best of our
knowledge, this work shows the hardware realization of the
bio-mimetic neuron model that can be used to form neural
networks (BioNN) to generate tightly coupled rhythms using
neuromodulatory control.

Before implementing the bio-mimetic neuron model on
hardware, we found it imperative to understand the inner
workings of the fast and slow excitable systems in the neuron
by modeling them as a 4-dimensional nonlinear dynamical
system and performing extensive bifurcation analysis. The
analysis helped in understanding the excitability of the neuron
under different conditions and how the parameters of the
individual conductance channels, such as gain, offset and delay

of the nonlinear activation function, operating at fast, slow, and
ultraslow timescales affect the membrane voltage dynamics
including the mode of operation (spiking or bursting), voltage
amplitude and spiking or bursting (intraburst and interburst)
frequency. The results from the analysis proved it is not pos-
sible to get bursting behavior with only one of these excitable
systems. Two excitable systems operating at sufficiently sepa-
rated timescales with mixed-feedback were essential to achieve
complex bursting dynamics through careful tuning of the
parameters and understanding the phase portraits obtained
through different bifurcation studies. Hence the mathematical
analysis helped in informing how to tune the neuron model in
hardware to operate in different regimes (spiking, bursting) by
characterizing the fast and slow sub-systems and determining
the tunable range of external input current.

The custom BioNN ASIC is implemented with 180nm
CMOS technology and the overall power consumption of the
chip, with 12 neurons and 40 synapses, is 10.88mW on aver-
age. Table II summarizes the results of this work compared to
the state-of-the-art. The energy needed to generate a spike for
the BioNN chip is 697nJ, which is calculated (for spiking or
bursting mode) by Power x Nspikes x Time. Though the power
consumption and area footprint of the BioNN is comparable
but larger than the state-of-the-art analog or mixed-signal
neurons, we intended this work to primarily serve as a proof
of concept to demonstrate the proposed BioNN neurons and
networks that can generate tunable bursting rhythms through
neuromodulatory control. As future work, we plan to scale
the BioNN aggressively to a deep-submicron technology to
optimize for area and energy efficiency, allowing scalability
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to build larger networks. We also plan to consider emerging
beyond-CMOS devices to replace the OTA based elements in
the neuron model to generate delay at multiple timescales and
enable nonlinear activation function for the parallel conduc-
tance channels.

VII. CONCLUSION

This paper presents a mathematical analysis and hardware
realization of bio-mimetic neural networks (BioNN) using a
nonlinear neuron model that utilizes two excitable systems,
designed from a control theory perspective. The neuron is
modeled as a mixed-feedback system operating at multiple
timescales that can be tuned to produce spiking and bursting
behavior. A comprehensive understanding of the system’s
dynamic behavior was successfully obtained by studying the
state variables space and performing bifurcation analysis on
the different parameters that constitute the autonomous sys-
tem of ordinary differential equations (ODEs) governing the
neuron model. The bifurcation study of the neuron model as a
4D dynamical system described the expected phase trajectories
of the membrane voltage.

The proposed BioNN was implemented on a prototype chip
utilizing the 180nm CMOS process technology. This chip
implements two neural networks, each containing a different
passive resistor. Each neural network consists of 1 isolated
neuron, 5 fully connected neurons, and 20 synapses. The
behavior of these neurons is related to the I-V curve of
diverse time-scale excitable circuits. By carefully selecting
bias voltages, the neuron could seamlessly shift between spike,
burst, and burst excitable behavior.

The neurons can exhibit rhythmic patterns found in tightly
coupled neural networks in biology, such as the CPGs,
allowing neuromodulatory control on hardware at nodal and
network levels. Recreating the CPG, crucial for movement in
animals, can enable robust sensorimotor control for robotic
locomotion. To demonstrate the use of BioNN in a real-world
application, the generated burst waveforms from the BioNN
chip are applied to a CPG, allowing it to control a robotic dog
to execute a jumping motion. It is possible to scale the size and
power of the neuron further by porting to a deep-submicron
technology node, thereby enabling large-scale neuromorphic
neural networks with nonlinear dynamics inspired by biology.
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